SLOVENSKI KEMIJSKI DNEVI 2022 28th Annual Meeting of the Slovenian Chemical Society 21.-23. september 2022 • Portorož-Portorose, Slovenija

Is the adsorption free energy a good criterion to distinguish between physisorption & chemisorption

Anton Kokalj Department of Physical and Organic Chemistry Jožef Stefan Institute

A. Kokalj (IJS)

Physisorption vs. Chemisorption

21 September 2022 1 / 19

The "20/40" rule

Many studies utilize the following criteria to distinguish between physisorption and chemisorption:

- physisorption: $\Delta G_{\rm ads}^{\circ} > -20 \ {\rm kJ/mol}$
- mixed physisorption/chemisorption: $\Delta G_{ads}^{\circ} \in [-20, -40] \text{ kJ/mol}$
- chemisorption: $\Delta G_{\rm ads}^{\rm o} < -40~{\rm kJ/mol}$

 $(\Delta G_{\mathrm{ads}}^{\circ} \equiv \mathrm{standard} \ \mathrm{free} \ \mathrm{energy} \ \mathrm{of} \ \mathrm{adsorption})$

イロト イヨト イヨト イヨト

The "20/40" rule

Many studies utilize the following criteria to distinguish between physisorption and chemisorption:

- physisorption: $\Delta G_{\rm ads}^{\circ} > -20 \ {\rm kJ/mol}$
- mixed physisorption/chemisorption: $\Delta G_{ads}^{\circ} \in [-20, -40] \text{ kJ/mol}$
- chemisorption: $\Delta G_{\rm ads}^{\circ} < -40 \ {\rm kJ/mol}$

 $(\Delta G_{\mathrm{ads}}^{\circ} \equiv \mathrm{standard} \ \mathrm{free} \ \mathrm{energy} \ \mathrm{of} \ \mathrm{adsorption})$

This "20/40" rule is based on the fundamental premise:

chemisorption interaction is strong & physisorption interaction is weak

イロト イヨト イヨト イヨト

Many studies utilize the following criteria to distinguish between physisorption and chemisorption:

- physisorption: $\Delta G_{\rm ads}^{\circ} > -20 \ {\rm kJ/mol}$
- mixed physisorption/chemisorption: $\Delta G_{ads}^{\circ} \in [-20, -40] \text{ kJ/mol}$
- chemisorption: $\Delta G_{\rm ads}^{\circ} < -40 \text{ kJ/mol}$

 $(\Delta G_{\mathrm{ads}}^{\circ} \equiv \mathrm{standard} \ \mathrm{free} \ \mathrm{energy} \ \mathrm{of} \ \mathrm{adsorption})$

イロト イヨト イヨト イヨト

This "20/40" rule is based on the fundamental premise:

chemisorption interaction is strong & physisorption interaction is weak

This premise is true, but still ...

Contention

The "20/40" rule is not a reliable criterion to distinguish between physisorption and chemisorption.

(i) $\Delta G_{\rm ads}^{\circ}$ is "intricate" $\Rightarrow \Delta H_{\rm ads}^{\circ}$ is a more direct measure of the molecule–surface interaction

(ii) physisorption is weak only for small molecules

(iii) due to bond-breaking (dissociative adsorption), the chemisorption enthalpy can be weak $\!\!\!\!\!\!*$

(iv) due to substantial molecular distortion during chemisorption, the chemisorption enthalpy can be weak *

A note on wording (stable energies/enthalpies are "negative"): stronger adsorption ⇒ lower adsorption energy weaker adsorption ⇒ higher adsorption energy { "weaker" energy

• • • • • • • • • • • •

(i) $\Delta G_{\rm ads}^{\circ}$ is "intricate" $\Rightarrow \Delta H_{\rm ads}^{\circ}$ is a more direct measure of the molecule–surface interaction

(ii) physisorption is weak only for small molecules

(iii) due to bond-breaking (dissociative adsorption), the chemisorption enthalpy can be weak^{*}

(iv) due to substantial molecular distortion during chemisorption, the chemisorption enthalpy can be weak *

A note on wording (stable energies/enthalpies are "negative"): stronger adsorption ⇒ lower adsorption energy weaker adsorption ⇒ higher adsorption energy { "weaker" energy

イロト イヨト イヨト イ

(i) $\Delta G_{\rm ads}^{\circ}$ is "intricate" $\Rightarrow \Delta H_{\rm ads}^{\circ}$ is a more direct measure of the molecule–surface interaction

(ii) physisorption is weak only for small molecules

(iii) due to bond-breaking (dissociative adsorption), the chemisorption enthalpy can be weak $\!\!\!\!\!\!^*$

(iv) due to substantial molecular distortion during chemisorption, the chemisorption enthalpy can be weak $\!\!\!\!\!\!^*$

*A note on wording (stable energies/enthalpies are "negative"): stronger adsorption ⇒ lower adsorption energy weaker adsorption ⇒ higher adsorption energy } "stronger" energy

イロト イヨト イヨト イヨ

(i) $\Delta G_{\rm ads}^{\circ}$ is "intricate" $\Rightarrow \Delta H_{\rm ads}^{\circ}$ is a more direct measure of the molecule–surface interaction

(ii) physisorption is weak only for small molecules

(iii) due to bond-breaking (dissociative adsorption), the chemisorption enthalpy can be weak $\!\!\!\!\!\!^*$

(iv) due to substantial molecular distortion during chemisorption, the chemisorption enthalpy can be weak *

*A note on wording (stable energies/enthalpies are "negative"): stronger adsorption ⇒ lower adsorption energy { "stron, weaker adsorption ⇒ higher adsorption energy { "weak

"stronger" energy "weaker" energy

イロト イポト イヨト イヨ

• term:

• For ideal gas: pV = RT = 2.5 kJ/mol at room T

For solids at ambient pressure: about 1000-times smaller

• Hence: $E \approx H$ =

E and H will be used interchangeably

イロト イヨト イヨト イ

• TS term:

• cannot be neglected (at room T)

[it is significantly larger than the pV term]

• pV term:

• For ideal gas: pV = RT = 2.5 kJ/mol at room T

For solids at ambient pressure: about 1000-times smaller

• Hence: $E \approx H$ =

 ${\mathbb C}$ and H will be used interchangeably

• • • • • • • • • • • •

- TS term:
 - cannot be neglected (at room T)
 [it is significantly larger than the pV tern

• pV term:

• For ideal gas: pV = RT = 2.5 kJ/mol at room T

For solids at ambient pressure: about 1000-times smaller

• Hence: $E \approx H \Rightarrow |E$ and H will be used interchangeably

• TS term:

< □ > < 同 > < 回 > < Ξ > < Ξ

- pV term:
 - For ideal gas: pV = RT = 2.5 kJ/mol at room T

For solids at ambient pressure: about 1000-times smaller

• Hence: $E \approx H \Rightarrow |E$ and H will be used interchangeably

- TS term:
 - cannot be neglected (at room T) [it is significantly larger than the pV term]

< □ > < 同 > < 回 > < Ξ > < Ξ

Adsorption free energy vs. adsorption enthalpy

For chemical reactions:

 $\Delta X = X$ (products) – X(reactants), where $X \equiv E, H, G, V, S$

- $T\Delta S_{ads}^{\circ}$ is sizable and strongly depends on the adsorption reaction type,
- better and simpler to consider ΔH°_{ads} instead

A. Kokali (IJS)

Adsorption free energy vs. adsorption enthalpy

For chemical reactions:

 $\Delta X = X$ (products) – X(reactants), where $X \equiv E, H, G, V, S$

For adsorption:

 $\Delta G_{ads}^{\circ} = \Delta H_{ads}^{\circ} - T \Delta S_{ads}^{\circ}$

- $T\Delta S_{ads}^{\circ}$ is sizable and strongly depends on the adsorption reaction type,
- better and simpler to consider ΔH°_{ads} instead

A. Kokali (IJS)

Adsorption free energy vs. adsorption enthalpy

For chemical reactions:

 $\Delta X = X(\mathsf{products}) - X(\mathsf{reactants}),$

where
$$X \equiv E, H, G, V, S$$

For adsorption:

 $\Delta G_{\rm ads}^{\circ} = \Delta H_{\rm ads}^{\circ} - T \Delta S_{\rm ads}^{\circ}$

- $T\Delta S_{\rm ads}^{\circ}$ is sizable and strongly depends on the adsorption reaction type, and masks the molecule–surface interaction
- better and simpler to consider $\Delta H^{\circ}_{\mathrm{ads}}$ instead

A. Kokalj (IJS)

 $\Delta H_{\rm ads}^\circ$ is a more direct measure of the molecule–surface interaction than $\Delta G_{\rm ads}^\circ$

But:

• $\Delta H^{\circ}_{\rm ads}$ and $\Delta G^{\circ}_{\rm ads}$ can differ significantly due to $T\Delta S^{\circ}_{\rm ads}$ • the "20/40" rule was "parameterized" for $\Delta G^{\circ}_{\rm ads}$

 ${\, \bullet \,}$ phys/chem threshold values for $\Delta H_{\rm ads}^{\circ}$ are different

Yet according to the "20/40" rule:

• weak ΔH°_{ads} values \Rightarrow physisorption

• strong ΔH°_{ads} values \Rightarrow chemisorption

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

 $\Delta H_{\rm ads}^\circ$ is a more direct measure of the molecule–surface interaction than $\Delta G_{\rm ads}^\circ$

But:

- $\Delta H_{\rm ads}^{\circ}$ and $\Delta G_{\rm ads}^{\circ}$ can differ significantly due to $T\Delta S_{\rm ads}^{\circ}$ • the "20/40" rule was "parameterized" for $\Delta G_{\rm ads}^{\circ}$ \downarrow
- ${\, \bullet \,}$ phys/chem threshold values for $\Delta H_{\rm ads}^{\circ}$ are different

```
Yet according to the "20/40" rule:
```

- weak $\Delta H_{\rm ads}^{\circ}$ values \Rightarrow physisorption
- strong ΔH°_{ads} values \Rightarrow chemisorption

Image: A math the second se

 $\Delta H_{\rm ads}^{\circ}$ is a more direct measure of the molecule–surface interaction than $\Delta G_{\rm ads}^{\circ}$

But:

- $\Delta H_{\rm ads}^\circ$ and $\Delta G_{\rm ads}^\circ$ can differ significantly due to $T\Delta S_{\rm ads}^\circ$
- the "20/40" rule was "parameterized" for $\Delta G_{\rm ads}^\circ$ \Downarrow
- ${\, \bullet \,}$ phys/chem threshold values for $\Delta H_{\rm ads}^{\circ}$ are different

Yet according to the "20/40" rule:

- weak $\Delta H^{\circ}_{\mathrm{ads}}$ values \Rightarrow physisorption
- strong $\Delta H_{\rm ads}^{\circ}$ values \Rightarrow chemisorption

< D > < P > < P > < P >

Physisorption

IUPAC: physisorption involves intermolecular van der Waals forces, which do not involve a significant change in the electronic orbital patterns of the species involved.

Wikipedia: physisorption is a process in which the electronic structure of the atom or molecule is barely perturbed upon adsorption.

ionic bonding \neq physisorption

although with respect to ions, electron-charge distribution is little affected

(but it is significant effected with respect to neutral species)

physisorption = (permanent) dipolar, induction, and dispersion interactions

イロト イヨト イヨト イ

Physisorption

IUPAC: physisorption involves intermolecular van der Waals forces, which do not involve a significant change in the electronic orbital patterns of the species involved.

Wikipedia: physisorption is a process in which the electronic structure of the atom or molecule is barely perturbed upon adsorption.

Chemisorption

IUPAC: adsorption which results from chemical bond formation (strong interaction) between the adsorbent and the adsorbate.

ionic bonding \neq physisorption

although with respect to ions, electron-charge distribution is little affected

(but it is significant effected with respect to neutral species)

physisorption = (permanent) dipolar, induction, and dispersion interactions

イロト イロト イヨト イヨー

Physisorption

IUPAC: physisorption involves intermolecular van der Waals forces, which do not involve a significant change in the electronic orbital patterns of the species involved.

Wikipedia: physisorption is a process in which the electronic structure of the atom or molecule is barely perturbed upon adsorption.

Chemisorption

IUPAC: adsorption which results from chemical bond formation (strong interaction) between the adsorbent and the adsorbate.

ionic bonding \neq physisorption

although with respect to ions, electron-charge distribution is little affected (but it is significant effected with respect to neutral species)

physisorption = (permanent) dipolar, induction, and dispersion interactions

イロト イヨト イヨト イ

Phyisorption vs. chemisorption

• Physisorption interaction is weak:

1 – 10 kJ/mol (for atom or diatomic molecule)

• Chemisorption interaction is strong:

several 100 kJ/mol (strong chemisorption)

However:

- chemisorption interaction is short ranged and directional (a chemisorbed molecule forms one or a few chemical bonds with the surface)
- physisorption interaction is long ranged and non-directional (a large molecule forms many weak physisorption interactions)
 ↓
 physisorption energy scales with the molecular size

Physisorption energy of an elephant is stronger than super strong chemisorption energy. But, it is an elephant!

イロト イボト イヨト イヨ

Phyisorption vs. chemisorption

• Physisorption interaction is weak:

1 – 10 kJ/mol (for atom or diatomic molecule)

• Chemisorption interaction is strong:

several 100 kJ/mol (strong chemisorption)

However:

- chemisorption interaction is short ranged and directional (a chemisorbed molecule forms one or a few chemical bonds with the surface)
- physisorption interaction is long ranged and non-directional (a large molecule forms many weak physisorption interactions)
 ↓
 physisorption energy scales with the molecular size

Physisorption energy of an elephant is stronger than super strong chemisorption energy. But, it is an elephant!

イロト 不得 トイヨト イヨト

Phyisorption vs. chemisorption

• Physisorption interaction is weak:

1 – 10 kJ/mol (for atom or diatomic molecule)

• Chemisorption interaction is strong:

several 100 kJ/mol (strong chemisorption)

However:

- chemisorption interaction is short ranged and directional (a chemisorbed molecule forms one or a few chemical bonds with the surface)
- physisorption interaction is long ranged and non-directional (a large molecule forms many weak physisorption interactions)
 ↓
 physisorption energy scales with the molecular size

Physisorption energy of an elephant is stronger than super strong chemisorption energy. But, it is an elephant!

イロト イボト イヨト イヨ

Kokalj et al., ChemPhysChem 12, 3547-3555

(based on DFT)

naphthotriazole @ Cu(111)

 $\Delta E_{ads} = -66 \text{ kJ/mol}$

 $\Delta E_{ads} = -99 \text{ kJ/mol}$

・ロト ・回ト ・ヨト

Kokalj et al., ChemPhysChem 12, 3547-3555

(based on DFT)

A. Kokalj (IJS)

naphthotriazole @ Cu(111)

es (based on DFT)

Kovačević et al., Mater. Chem. Phys. **137**, 331–339 benzotriazole @ Fe(110)

electron-density difference: $\Delta
ho({m r}) =
ho_{
m mol/surf}({m r}) -
ho_{
m mol}({m r}) -
ho_{
m surf}({m r})$

A. Kokalj (IJS)

physisorption can become stronger than chemisorption

Experimental confirmation:

G. Scoles et al., J. Phys. Chem. B 102 (1998) 3456–3465
 J. Phys. Chem. B 102 (1998) 9266–9275

• F. Schreiber, Prog. Surf. Sci. 65 (2000) 151-257

イロト イヨト イヨト イ

Experimental confirmation:

 G. Scoles et al., J. Phys. Chem. B 102 (1998) 3456–3465 J. Phys. Chem. B 102 (1998) 9266–9275

• F. Schreiber, Prog. Surf. Sci. 65 (2000) 151-257

A. Kokalj (IJS)

イロト イボト イヨト イヨ

Experimental confirmation:

 G. Scoles et al., J. Phys. Chem. B 102 (1998) 3456–3465 J. Phys. Chem. B 102 (1998) 9266–9275

F. Schreiber, Prog. Surf. Sci. 65 (2000) 151–257

A. Kokalj (IJS)

イロト イポト イヨト イヨ

Alkanthiols @ Au(111): experimental data

G. Scoles et al., J. Phys. Chem. B 102 (1998) 3456-3465, doi: 10.1021/jp980047y

A. Kokalj (IJS)

Good criteria to distinguish between physisorption and chemisorption:

(i) electron-density difference: $\Delta \rho({m r}) =
ho_{
m mol/surf}({m r}) -
ho_{
m mol}({m r}) -
ho_{
m surf}({m r})$

- physisorption: almost no electron-density redistribution
- chemisorption: strong electron-density redistribution (appearance of bonds)

(ii) molecule–surface distance: $d_{\rm mol-surf}$

- physisorption: $d_{\rm mol-surf} \approx$ sum of van der Waals radii ≈ 3 Å
- chemisorption: $d_{\rm mol-surf} \approx$ sum of covalent radii ≈ 2 Å

Molecular distortion during adsorption

benzotriazole @ Fe(110)

substantial $\Delta
ho(m{r})$ suggests a stronger bonding than $\Delta E_{
m ads}$ of -130 kJ/mol

relatively weak $E_{\rm ads}$ is due to a considerable molecular distortion

• rigid binding energy: -303 kJ/mol $(E_{\rm b}^{\rm rigid} = E_{\rm mol/surf} - E_{\rm mol}^{\rm rigid} - E_{\rm surf}^{\rm rigid})$

- cost of molecular distortion: 159 kJ/mol
- cost of substrate distortion: 14 kJ/mol

Image: A math a math

Molecular distortion during adsorption

benzotriazole @ Fe(110)

substantial $\Delta \rho(\mathbf{r})$ suggests a stronger bonding than ΔE_{ads} of -130 kJ/mol \downarrow relatively weak E_{ads} is due to a considerable molecular distortion

- rigid binding energy: -303 kJ/mol $(E_{\rm b}^{\rm rigid} = E_{\rm mol/surf} E_{\rm mol}^{\rm rigid} E_{\rm surf}^{\rm rigid})$
- cost of molecular distortion: 159 kJ/mol
- cost of substrate distortion: 14 kJ/mol

イロト イヨト イヨト・

Bond-breaking and bond-making during adsorption

< □ > < 同 > < 回 > < Ξ > < Ξ

Bond-breaking and bond-making during adsorption

A. Kokalj (IJS)

Physisorption vs. Chemisorption

21 September 2022 14 / 19

Bond-breaking and bond-making during adsorption

Solids (surf & mol/surf):

 $S = S_{\mathrm{vib}} + S_{\mathrm{configurational}} + \cdots$ $\uparrow \text{typically neglected}$

• • • • • • • • • •

Solids (surf & mol/surf):

 $S = S_{vib} + S_{configurational} + \cdots$ typically neglected

Adsorption: $mol + * \rightarrow mol^*$

Solids (surf & mol/surf):

$$S = S_{vib} + \frac{S_{configurational}}{typically neglected} + \cdots$$

Adsorption: mol + * \rightarrow mol*roto-transl. contribution
of mol/surf & surf $\Delta S_{ads} = S(products) - S(reactants)$ $= [S_{vib}(mol/surf) - S_{vib}(surf) - S_{vib}(mol)] + [0 - S_{tr+rot}(mol)] + \cdots$ substantial cancellation
 $(T \Delta S_{vib}$ usually within ±10 kJ/mol) $-T \Delta S_{ads}^{tr+rot} = TS_{tr+rot}(mol) > 0$
(sizable positive contribution)(at T = 300 K) $= C \Delta S_{ads}^{tr+rot} = TS_{tr+rot}(mol) > 0$
(sizable positive contribution)A. Kokalj (US)Physisorption vs. Chemisorption

Roto-translational contribution

A. Kokalj (IJS)

Plain vs. condensation adsorption

$CH_3Si(OH)_3 @ \gamma - AlOOH(010)$

 $CH_3Si(OH)_3 + * \rightarrow CH_3Si(OH)_3*$

CH₃Si(OH)₃: loss of roto-transl.: 75 kJ/mol

p = 1 atm, T = 298 K

 $\Delta H_{ads}^{o} = -83 \text{ kJ/mol}$ $\Delta G_{ads}^{o} = -4 \text{ kJ/mol}$

 $CH_3Si(OH)_3 + OH^* \rightarrow CH_3Si(OH)_2O^* + H_2O$

・ロト ・回 ト ・ ヨト ・

CH₃Si(OH)₃: loss of roto-transl.: 75 kJ/mol H₂O: gain of roto-transl. -49 kl/mol

Plain vs. condensation adsorption

CH₃Si(OH)₃ @ γ-AlOOH(010)

 $\mathsf{CH}_3\mathsf{Si}(\mathsf{OH})_3 + * \to \mathsf{CH}_3\mathsf{Si}(\mathsf{OH})_3 *$

CH₃Si(OH)₃: loss of roto-transl.: 75 kJ/mol

p = 1 atm, T = 298 K

 $\Delta H_{ads}^{\circ} = -83 \text{ kJ/mol}$ $\Delta G_{ads}^{\circ} = -4 \text{ kJ/mol}$ $\mathsf{CH}_3\mathsf{Si}(\mathsf{OH})_3 + \mathsf{OH}^* \to \mathsf{CH}_3\mathsf{Si}(\mathsf{OH})_2\mathsf{O}^* + \mathsf{H}_2\mathsf{O}$

< □ > < □ > < □ > < □ > < □ >

the "20/40" rule: physisorption

 $\Delta H_{ads}^{o} = -46 \text{ kJ/mol}$

 $\Delta G_{ads}^{\circ} = -21 \text{ kJ/mol}$

A. Kokalj (IJS)

Physisorption vs. Chemisorption

21 September 2022 17 / 19

Plain vs. condensation adsorption

$CH_3Si(OH)_3 @ \gamma - AlOOH(010)$

 $CH_3Si(OH)_3 + * \rightarrow CH_3Si(OH)_3^*$

CH₃Si(OH)₃: loss of roto-transl.: 75 kJ/mol

 $CH_3Si(OH)_3 + OH^* \rightarrow CH_3Si(OH)_2O^* + H_2O$

p = 1 atm, T = 298 K

Conclusions

- $\Delta H^\circ_{\rm ads}$ and $\Delta G^\circ_{\rm ads}$ are not reliable criteria to distinguish between physisorption and chemisorption
 - (i) ΔG_{ads} : loss of "roto-translation" during adsorption (depends on the adsorption reaction type)
 - (ii) physisorption energy scales with the size of the molecule (it is weak only for small molecules)
- (iii+iv) chemisorption can display "weak" $\Delta H_{\rm ads}^\circ$
 - (iii) due to bond-breaking
 - (iv) due to substantial molecular deformation

For further info, see: A. Kokalj, Corros. Sci. 196 (2022) 109939

イロト イポト イヨト イヨ

Conclusions

- $\Delta H^\circ_{\rm ads}$ and $\Delta G^\circ_{\rm ads}$ are not reliable criteria to distinguish between physisorption and chemisorption
 - (i) ΔG_{ads} : loss of "roto-translation" during adsorption (depends on the adsorption reaction type)
 - (ii) physisorption energy scales with the size of the molecule (it is weak only for small molecules)
- (iii+iv) chemisorption can display "weak" $\Delta H_{\rm ads}^\circ$
 - (iii) due to bond-breaking
 - (iv) due to substantial molecular deformation

good criteria:

- modeling: molecule–surface bond distances & electronic structure analysis (electron-density difference, $\Delta \rho(r)$)
- experiment: spectroscopy

For further info, see: A. Kokalj, Corros. Sci. 196 (2022) 109939

< □ > < □ > < □ > < □ > < □ >

- Matic Poberžnik
- Nataša Kovačević

イロト イヨト イヨト イヨト

- Matic Poberžnik
- Nataša Kovačević

Thank you for your attention

• • • • • • • • • •

Plain vs. activated adsorption

イロト 不得 トイヨト イヨト

$CH_3Si(OH)_3 @ \alpha - Al_2O_3(001)$ [solid/liquid interface]

(aq)

CH₃Si(OH)₃: loss of roto-transl.: 67 kJ/mol

 $\Delta H_{ads}^{o} = -58 \text{ kJ/mol}$ $\Delta G_{ads}^{\circ} = +2 \text{ kJ/mol}$

 $CH_3Si(OH)_3 + * \rightarrow CH_3Si(OH)_3*$

 $\mathsf{CH}_3\mathsf{Si}(\mathsf{OH})_3 + \mathsf{OH}^* \rightarrow \mathsf{CH}_3\mathsf{Si}(\mathsf{OH})_2\mathsf{O}^* + \mathsf{H}_2\mathsf{O}$

 $CH_3Si(OH)_3$: loss of roto-transl.: 67 kJ/mol H_2O : gain of roto-transl. -31 kJ/mol

イロト イヨト イヨト イヨト

 $\Delta H_{ads}^{o} = -73 \text{ kJ/mol}$ $\Delta G_{ads}^{o} = -37 \text{ kJ/mol}$

c = 1 M, T = 298 K

