Y8 annual meeting of IRP PACS₂ @ IJS, 20 Sep 2022

The implausibility of bidentate bonding of silanols to oxidized aluminum surfaces

Anton Kokalj & Matic Poberžnik Department of Physical and Organic Chemistry

Jožef Stefan Institute

Aim of the study

How siloxane coatings adhere to Al surfaces?

Aim of the study

How siloxane coatings adhere to Al surfaces?

Premise: Al surface are oxidized

Aim of the study

How siloxane coatings adhere to Al surfaces? OH OH OH OH Oxide layer Al

Premise: Al surface are oxidized and fully hydroxylated

How siloxane coatings adhere to Al surfaces?

Fully hydroxylated surface

Reactions modeled by DFT calculations

Monodentate bonding

Bidentate bonding

 $\Delta E \equiv \Delta E(T=0 \text{ K}) \text{ w/o ZPE}$ $\Delta G \equiv \Delta G (T=298.15 \text{ K}, p=1 \text{ atm})$

Poberžnik et al., J. Phys. Chem. C **122**, 9417-9431

Bidentates unfavorable?

• On the utilized model of oxidized-Al surface, bidentates are unstable ... is this results specific or general?

Bidentates unfavorable?

 On the utilized model of oxidized-Al surface, bidentates are unstable ... is this results specific or general?

Poberžnik & Kokalj, Appl. Surf. Sci. 492, 909–918

T = 298 K, p = 1 atm

Dimer: bidentate bonding

Poberžnik et al., J. Phys. Chem. C 122, 9417-9431

Trimer: bidentate bonding

Why unstable?

Possibility #1: the 2nd SiO—Al bond is weaker

Structural analysis: NO Charge density difference $\Delta \rho(\mathbf{r})$: NO

$-0.015 \ e/a_0^3$ \square \square \square \square \square \square \square = +0.015 e/a_0^3

monodentate

clean

bidentate #1

bidentate #2

Why unstable? HO R OH OH

Possibility #2: bidentate induced substrate deformation

 $\begin{array}{c} & & & d_{O \cdots O}^{OH} \\ o_{i}^{H} & & & & \\ & & & \\ & & & \\ & & & \\ o_{i}^{H} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \right) \begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \right) \begin{array}{c} & & & \\ & &$

considerably reduced O–O distance, by ~ 1 Å

 $^{\mathsf{H}}$

oH

Why unstable? HO R OH O O OH AI AI AI AI Possibility #2: bidentate induced substrate deformation

 $^{\mathsf{H}}$

 $^{\mathsf{H}}$

 $l_{O...O}^{biden}$

substrate deformation:

• monodentate:

0.3±0.2 eV

• bidentate:

 $1.7\pm0.2 \text{ eV}$

considerably reduced O–O distance, by ~ 1 Å

Summary

Poberžnik & Kokalj, Appl. Surf. Sci. 492, 909–918

Thank you for your attention!