9 June 2021

FREE WEBINAR SERIES IN CORROSION SCIENCE

Molecular modeling of corrosion inhibitors

Anton Kokalj & his colleagues at Department of Physical and Organic Chemistry

Jožef Stefan Institute, Ljubljana, Slovenia

9 June 2021

FREE WEBINAR SERIES IN CORROSION SCIENCE

Atomistic <u>Molecular modeling of corrosion</u> inhibitors

Anton Kokalj & his colleagues at Department of Physical and Organic Chemistry

Jožef Stefan Institute, Ljubljana, Slovenia

9 June 2021

CORRO ZOOM

FREE WEBINAR SERIES IN CORROSION SCIENCE

Atomistic organic <u>Molecular modeling of</u> corrosion inhibitors

Anton Kokalj & his colleagues at Department of Physical and Organic Chemistry

Jožef Stefan Institute, Ljubljana, Slovenia

- 1) MEPTIC: Molecular Electronic Properties To Inhibition-efficiency Correlation relies on associating inhibitor molecular properties (without any consideration of a metal substrate) with experimentally determined inhibition efficiency
- 2) Machine-learning methods

3) Physics-based modeling

atomistic modeling of interactions between components of corrosion system gives deeper physical insight, but is technically more complicated & computationally much heavier

multi-scale modeling using ICME paradigm emerging approach, currently at the level of implementations in corrosion inhibitor research

Quantifying inhibitor performance

inhibition efficiency (η)

a number that indicates how "good" is a given inhibitor

PROS:

$$\eta = \frac{R_{\rm p}^{\rm inh} - R_{\rm p}^{\rm blank}}{R_{\rm p}^{\rm inh}}$$

- normalized: $\eta \in [0,1]$
- under simplifying assumptions: $\eta \approx \Theta$ (surface coverage)

CONS:

highly "non-linear"
Corros. Sci. 179 (2021) 108856

PREMISE:

the greater is the inhibitor adsorption affinity, the more efficient is the inhibitor

Generally accepted premise

adsorption of inhibitor is important to achieve inhibition

Even stronger PREMISE: the "stronger" the inhibitor adsorbs, the more efficient it is

1 eV ≈ 100 kJ/mol ≈ 25 kcal/mol

MEPTIC premises

MEPTIC: Molecular Electronic Properties To Inhibition-efficiency Correlation relies on associating inhibitor molecular properties (without any consideration of substrate) with experimentally determined inhibition efficiency

Popular molecular electronic parameters:

- eigenvalues of HOMO (ϵ_{HOMO}) and LUMO (ϵ_{LUMO})
- HOMO-LUMO gap ($\Delta \varepsilon = \varepsilon_{LUMO} \varepsilon_{HOMO}$)

HOMO = highest occupied molecular orbital LUMO = lowest unoccupied molecular orbital

Premise:

the **smaller** the HOMO-LUMO gap the **stronger** the molecule-surface interaction, the **stronger** the interaction the **better** the inhibitor

HOMO & LUMO

Why is a HOMO-LUMO gap important for the molecule-surface interaction?

 $He_{A} / He_{B} / H$

He₂

net repulsion (two-orbital four-electron interaction)

From H₂ to solid

HOMO – highest occupied molecular orbital LUMO – lowest unoccupied molecular orbital metal (conductor)

From H₂ to solid

Density of states (DOS)

Density of states (DOS)

Electronic structure of metals

Two types of bands:

- delocalized (broad) sp-pands
- localized (narrow) d-bands

Transition metals (TMs):

- s-band is half filled for all TMs (similar bonding for all TMs)
- variation in bonding comes from d-bands

Electronic structure of TMs

Hammer-Nørskov chemisorption model: d-band center (ε_d)

 $TM \equiv transition metal$

 $TM \equiv transition metal$

 $TM \equiv$ transition metal

Tuning molecule-surface bonding

 $TM \equiv$ transition metal

tuning the molecule

Energy

Tuning molecule-surface bonding

$TM \equiv$ transition metal

tuning the molecule

Energy

tuning the surface

Position of the d-band

Kokalj, Chem. Phys. **393** (2012) 1–12

The HOMO-LUMO premise

Molecular perspective: strong molecule-surface interaction implies:

- high eigenvalue of HOMO (ε_{HOMO})
- low eigenvalue of LUMO (ε_{LUMO})

 $\mathcal{E}_{LUMO} > \mathcal{E}_{HOMO}$ small HOMO-LUMO gap (Δε = ε_{LUMO} - ε_{HOMO})

... for the argument to work, everything else should be kept compatible (similar, homologous cases)

But:

does a stronger inhibitor-surface interaction entails a better inhibitor?

The stronger, the better?

A possible objection to "the stronger, the better" premise

Sabatier principle in heterogeneous catalysis

The stronger, the better?

A possible objection to "the stronger, the better" premise

"Sabatier principle" in corrosion?

HOMO-LUMO gap

 ΔN = HSAB molecule-to-surface electron donating ability

• wrong reading of the paper resulted in " $\Delta N < 3.6$ rule":

"if $\Delta N < 3.6$, the inhibition efficiency increases with increasing ΔN "

 ΔN < 3.6 rule is useless; this condition is always fulfilled
 Kokalj, Corros. Sci. 180 (2021) 109016

The stronger, the better

Let's test the MEPTIC approach ... (i.e., the HOMO-LUMO "business")

Experimental characterization of 24 heterocyclic organic compounds (mainly azoles)

System: copper in 3 wt.% NaCl aqueous solution

group-2: hydroxy-heterocycles

group-3: benzazoles

group-4: imidazoles

Kokalj et al. Corros. Sci. 179 (2021) 108856

₽. Kokalj et al. Corros. Sci. 179

(2021) 108856

Take home message

- A single molecular electronic parameter is (almost) useless to predict corrosion inhibition efficiency (e.g., a smaller HOMO-LUMO gap does not imply a better inhibitor)
- A model is needed:
 - data driven models: machine learning methods
 - physics based models

Toward data-driven model.

4-parameter regression models (imidazole compounds on Cu/Zr materials)

PROS:

• *in silico* screening of similar inhibitors

CONS:

lack of physical insight

Kokalj et al. Corros. Sci. (2021) under submission Xie et al. J. Alloy Compd. **879** (2021) 160464

Physics based models

Explicit atomistic modeling of interactions between components of corrosion system provides a physical insight, but is technically more complicated &

computationally much heavier

quantum-mechanicalvs.empirical force-field methods(unbiased)(reliable only for "parameterized" systems)

Multi-scale modeling using ICME paradigm

emerging approach, currently at the level of implementations in corrosion inhibition research

Computational method

DFT = density functional theory

(computationally affordable first-principle quantum-mechanical method)

slab model of a surface (periodic boundary conditions)

Method: DFT (GGA-PBE functional)

+ semi-empirical dispersion correction (Grimme DFT-D) + Hubbard U correction (aka GGA+U) for TM oxides

Basis Set: plane-waves (+ pseudopotentials)

multi-slab model (PBC applied also along the surface normal direction)

used by plane-wave DFT codes

Atomistic modeling ...

PROS:

- model is assembled atom by atom
- allows to study hypothetical scenarios

CONS:

models can be too simple or even irrelevant for real cases

used by plane-wave DFT codes

Reductionistic approach

Start simple and elaborate incrementally ...

azole molecules @ Cu surfaces

Inhibitor-surface bonding

Corros. Sci. **98**, 457

ChemPhysChem 12, 3547

Inhibitor-surface bonding

weak bonding of intact azoles to copper surfaces (below about 1 eV)

Cl-Cu(111) bond strength > 3 eV

Arrhenius equation for rate constant:

fre

$$k = \nu \exp\left(-\frac{E^*}{k_{\rm B}T}\right)$$
quency prefactor Boltzmann constant

weak bonding of intact azoles to copper surfaces (below about 1 eV)

typical residence time of a molecule on the surface at T = 300 K

$$\tau = \nu^{-1} \exp\left(\frac{E_{\rm des}}{k_{\rm B}T}\right) \approx 10^{-6} \, \rm s$$

for $E_{
m des}=1$ eV (at au=300 K): au=10~
m s

molecule must adsorb stronger than 1 eV to persist on the surface at room T !

Heterogeneous catalysis ...

Transition-metal surfaces are good bond cleavers

S-H, O-H, N-H, C-H intramolecular bonds cleave particularly easily @ transition-metal surfaces

Corros. Sci. 98 (2015) 457

Non-activated vs. activated adsorption

typical residence time of a molecule on the surface at T = 300 K

MolH + 2* → Mol* + H*

surface defects promote dissociation Kokalj et. al., J. Phys. Chem. C **118**, 944 ***** ≡ adsorption site**A*** ≡ adsorbed species

MolH + O* + * → Mol* + OH*

chemisorbed oxygen promotes dissociation Gustinčič & Kokalj, Metals **8**, 310

• MoIH + OH* \rightarrow MoI* + H₂O

chemisorbed hydroxyls promote dissociation Kokalj, Faraday Discuss. **180**, 415

 $MO|H + O^* + * \rightarrow MO|^* + OH^*$

* = adsorption site A* = adsorbed species

Gustinčič & Kokalj, Metals 8, 310

 $\Delta E \approx -0.2 \text{ eV}$

ΔE ≈ −0.3 eV Kokalj, Faraday Discuss. **180**, 415

Surface vs. solvent

- surface = 2D system
- solvent = 3D system
- chemistry of solvent ≠ chemistry of surface
- Example:

$MolH^* + O^* \rightarrow Mol^* + OH^*, \Delta E$

Gustinčič & Kokalj, Metals 8, 310

$MolH^* + O^* \rightarrow Mol^* + OH^*, \Delta E$

Kokalj et al., Appl. Surf. Sci. 479, 463–468

Imidazole vs. triazole: different chemistry

$MolH^* + O^* \rightarrow Mol^* + OH^*, \Delta E$

imidazole C2-H dissociation

triazole N1-H dissociation

similar thermodynamic stability

Kokalj et al., Appl. Surf. Sci. 479, 463–468

Imidazole vs. triazole: different chemistry

similar thermodynamic stability

Kokalj et al., Appl. Surf. Sci. 479, 463–468, Gustinčič & Kokalj, Metals 8, 310

In cooperation with Philippe Marcus, Dominique Costa et al.

Aluminum

Al surfaces are oxidized & (possibly) hydroxylated

Al surface models

Poberžnik et al., J. Phys. Chem. C **122**, 9417, Appl. Surf. Sci. **525**, 146156 Milošev et al., J. Electrochem. Soc. **166**, C3131, *ibid.* **167**, 061509, *ibid.*, submitted

Inhibitors @ aluminum

Anchor groups

Anchor = phosphonic acid

Beware: ΔE does not measure the molecule-surface bond strength due to bond-breaking & bond-making **Info:** PO-Al bond strength $\approx 4.6 \text{ eV}$

T = 298.15 K, *p* = 1 atm

Anchor = silanol

 $\Delta G = +1.11 \text{ eV}$

Milošev et al., J. Electrochem. Soc. 167, 061509

Milošev et al., J. Electrochem. Soc. 167, 061509 Anchor = carboxylic acid

 $\Delta G = -0.98 \text{ eV}$

 $\Delta E = -0.87 \text{ eV}$ Me HO^{Me} $HO^$

 $\Delta G = -0.60 \text{ eV}$

Anchor = thiol

Milošev et al., J. Electrochem. Soc. 167, 061509

 $\Delta G = -0.60 \text{ eV}$

Milošev et al., J. Electrochem. Soc. 167, 061509

Anchor = imidazole

Anchor groups: bottom line

Anchor groups: bottom line

Carboxylic acids

Carboxylic acids – designation

octanoic acid = C7-COOH = CA-8

Carboxylic acids – CA

I. Milošev et al., J. Electrochem. Soc. 166, C3131

Carboxylic acids – standalone

Role of backbone

backbone governs lateral interactions

Decoding lateral interactions

Poberžnik et al., Appl. Surf. Sci. 525, 146156

Alkyl chain length, n

Effective coverage

longer alkyl chain = smaller gaps = greater effective coverage

Milošev et al., J. Electrochem. Soc. 166, C3131

Effective coverage

Milošev et al., J. Electrochem. Soc. 166, C3131

Beware of PBC (periodic boundary conditions) !

PBC & divergent Coulomb interactions: add Na⁺ to make supercell neutral

Beware of PBC (periodic boundary conditions) !

PBC & divergent Coulomb interactions:

add Na+ to make supercell neutral

Beware of PBC (periodic boundary conditions) !

PBC & divergent Coulomb interactions:

add Na⁺ to make supercell neutral

3D PBC: beware of artifacts

multi-slab model (PBC applied also along the surface normal direction)

used by plane-wave DFT codes

3D PBC: beware of artifacts

reverse engineer to get rid of PBC artifacts

many supercells (PBC applied laterally)

multi-slab model (PBC applied also along the surface normal direction)

Simplified model calculations:

- metal/SAM/water described by implicit continuum slabs
- ions treated explicitly
- elastic penalty for Cl⁻ penetration into SAM neglected

metal surface charge density compatible with ± 0.074 e/nm²

Contributions to the penetration barrier:

- inferior solvation of ions in SAM ($\Delta\Delta G_{solv}$)

$$\Delta G_{\rm solv}^{\rm Born} = -\frac{q_{\rm ion}^2}{2r_{\rm ion}} \left(1 - \frac{1}{\varepsilon}\right) \quad [\text{in Hartree atomic units}]$$
$$\Delta \Delta G_{\rm solv}^{\rm Born} = \Delta G_{\rm solv}^{\rm Born}({\rm SAM}) - \Delta G_{\rm solv}^{\rm Born}({\rm water}) = \frac{q_{\rm ion}^2}{2r_{\rm ion}} \left(\frac{1}{\varepsilon_{\rm SAM}} - \frac{1}{\varepsilon_{\rm water}}\right)$$

- contribution due to electric field in the Helmholtz double-layer (U_{elec})
- elastic penalty (currently neglected)

Simplifying assumptions:

- CA molecules fully cover the surface irrespective of the alkyl chain length (expt.: only long-chain CAs form a complete SAM)
- surface is fully covered by SAM at all electrode potentials
- elastic penalty for Cl⁻ penetration is neglected

Summary

- SAM stability: anchor-surface adhesion + intermolecular lateral cohesion
- lateral interactions between alkyl chains are maximized by tilting
- longer alkyl chains:
 - display stronger lateral cohesion (needed for CA's SAM formation)
 - more efficiently hinder the access to material's surface

Conclusions

The purpose of this presentation was to show with several examples that ...

DFT modeling can provide several details and useful insights that may be of relevance for corrosion inhibition and can subsequently help to explain investigated phenomena

Molecular modeling of organic corrosion inhibitors: calculations, pitfalls, and conceptualization of molecule–surface bonding

Anton Kokalj*

Department of Physical and Organic Chemistry, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia

Abstract

Molecular modeling of corrosion inhibitors has gained momentum in the last decade. This paper describes various approaches, starting with the so-called MEPTIC (Molecular Electronic Properties To Inhibition-efficiency Correlation) approach that is among the most commonly used in the literature, and illuminates some pitfalls that appear more or less frequently therein, such as the " $\Delta N < 3.6$ rule", inferences based on correlations obtained for only a few inhibitors, attributing significance to total energies, reliance on too small differences, etc. The relevance of the often

used molecular electronic parameters in the MEPTIC approach a examined, because the basic premise of many modeling studies i of inhibitor molecules. To this end, the conceptualization of mol of the explicit modeling of inhibitor adsorption, either by quantu molecular-dynamics methods, are discussed, such as the use of t and solid/vacuum instead of electrified solid/liquid interfaces, ap between physisorption and chemisorption, and bond-breaking an

Keywords: B. Modeling studies, C. Interfaces, C. Neutral inhibit

Corros. Sci. (2021) submitted

Molecular Modeling of Corrosion Inhibitors

A Kokalj, Jožef Stefan Institute, Ljubljana, Slovenia **D Costa,** Institut de Recherche de Chimie Paris/Research Group of Physical

© 2018 Elsevier Inc. All rights reserved.

Introduction

Anodic, Cathodic, and Mixed Inhibitors **Various Approaches for Modeling Corrosion Inhibitors** MEPTIC and Machine Learning Approaches More mechanistically oriented models Explicit Modeling of Corrosion Inhibition Explicit Modeling Using Force-Field Methods Explicit Modeling Using DFT Methods Inhibitor–surface interaction Further aspects Encyclopedia of INTERFACIAL CHEMISTRY Surface Science and Electrochemistry

Klaus Wandelt

doi:10.1016/B978-0-12-409547-2.13444-4

Acknowledgments

DFT group:

Matic Poberžnik

Dunja Gustinčić Matjaž Dlouhy Matic Lozinšek Nataša Kovačević Sebastijan Peljhan Lea Gašparič, Antonija Lesar

Electrochemistry group:

Ingrid Milošev – "the" protagonist of Peter Rodič corrosion studies @ IJS Barbara Kapun Dolores Zimerl Dževad Kozlica Stojan Stavber, ...

: IJS

Dept. Physical & Organic Chemistry, Jožef Stefan Institute, Slovenia

Acknowledgments

Thank you for your attention