
How the GUIB works

Anton Kokalj

February 24, 2004

Abstract

This document describes briefly the GUIB: (i) how it works, and
(ii) how to make a GUI application by using the GUIB engine. It
is highly recommended that the document from the GUIB web page
entitled Description is read first.

Contents

1 The easiest way 1

2 A more elaborate way 5

3 An example of real GUI application: PWgui 8

4 File and directory structure of GUIB 9

1 The easiest way

The easiest way to create a simple GUI application, is to use the guib script
that comes with GUIB package. Let say that your module definition-file is
named myGUI.def, then a simple GUI will be constructed by the following
execution:

guib myGUI.def

1

To explain how the guib script works, the following diagram is provided:

This diagram shows that the module definition-file is source from the
loadModule procedure. Technically, the module definition-file is a Tcl
script, which uses the GUIB library. The whole script is embedded inside the
module keyword, which is a wrapper for the moduleObj class. This means
that by a call to module an object of moduleObj type is constructed. This
is a complex object, and it holds the whole GUI definition.

To illustrate—from programming point of view—how the definition of the
GUI is stored in the moduleObj type object, let us consider the following
example:

module \#auto -title "Testing" -script {
page p1 -name "Page No.1" {

line l1st -name "1st line" {
var title -label "Title:"
var code -label "Code:"

}
line l2nd -name "2nd line" {

var description -label "Description:"
}

}

2

line llast -name "last line" {
var conclusion -label "Conclusion:"

}
}

Here the following GUIB keywords are used: module, page, line, var.
The GUIB keywords can be divided into two groups: objects and items. The
keywords such as page and line are object-keywords as they construct new
object of a given type, while the var keyword is an example of the item-
keyword, i.e., item keywords do not create new objects, but their content is
stored in corresponding object-keyword. Which GUIB keyword is object- or
item-like can be guessed from the syntax. Consider the following:

line l1st -name "1st line" {
var title -label "Title:"
var code -label "Code:"

}

Obviously, the line keyword is an object-keyword, and in this examples
it holds two var item-type keywords.

The base-class of keyword objects is keywordObj class. This class pos-
sesses a mechanism for storing the information of the module definition file in
hierarchical fashion. Let say that we want to retrieve all information of the
module definition file that was already stored in moduleObj type object.
This will be done recursively and will look like this:

proc retrieve_and_DoWhatever {obj} {

set NItem [$obj getID]
for {set id 0} {$id <= $NItem} {incr id} {

check if $id keyword is object-type !!!
set childObj [$obj getChild $id]

if { $childObj != "" } {
#
keyword is OBJECT-type, manage it recursively
#
...
retrieve_and_DoWhatever $childObj
...

3

} else {
#
keyword is ITEM-type
#
...

}
}

}

To illustrate more schematically, how the information about the module-
definition file is stored, the following diagram shows this graphically for the
above module #auto -title ”Testing” -script {...} example.

4

2 A more elaborate way

The GUI constructed by the guib script can only hold one module definition
file. Moreover no configuration is possible. If we want to create a configurable
GUI that will be able to create/manipulate several different input files, than
a GUI class provided by the GUIB package can be used. Below scheme
shows the idea in diagrammatic fashion:

5

Now let us do a sample GUI application that will use the GUI class
to construct a configurable GUI, which will be able to create/manipulate
several input files. Let’s say that the module definition files for these in-
puts are stored in files myInput-1.def, and myInput-2.def. Let’s say we
also have help files with description of both input formats stored in files
myInput-1.html, and myInput-2.html. Now we have to create a GUI script,
for example:

#!/bin/sh
next line restarts wish \
exec wish

--
INITIALIZATION
--

check if GUIB environmental variable is defined

if { [info exists env(GUIB)] } {
instruct the Tcl where to search for GUIB package
lappend auto_path [file join $env(GUIB)]

6

} else {
we assume that GUIB package is on some "standard" path and Tcl
will find it.

}

load a Guib package
package require Guib 0.1.1

withdraw the "." toplevel window, and bind the <Destroy> event
to ::guib::exitApp
wm withdraw .
bind . <Destroy> ::guib::exitApp

--
GUI construction
--

construct the GUI object
set gui [::guib::GUI \#auto -title "My 1st GUI" -appname MyGUI]

Add modules. The syntax is:

$gui addModule module $moduleID $moduleLabel $moduleFile
#
$gui addModule module inp1 "My Input-1" myInput-1.def
$gui addModule module inp2 "My Input-2" myInput-2.def

Add help. The syntax is:

$gui addHelp help $helpID $helpLabel $helpFile
#
$gui addHelp help help1 "Help for Input-1" myInput-1.html
$gui addHelp help help2 "Help for Input-2" myInput-2.html

#
some extra configuration of the GUI
#
$gui extra {

#
add a logo to toolbar panel
#
image create photo myLogo -format gif -file myLogo.gif

7

set tb [component toolbar]
set logo [$tb add label logo -image myLogo]
pack configure $logo -side right

}

When GUI defined in above file will be launched, an application toplevel
window with menubar and toolbar will appear. But none of the GUI will be
rendered. This can be done by selecting either File → New Input ... or
File→ Open Input ... menu. The following diagram shows a programming
scheme for New Input ... method:

The scheme for the Open Input ... is very similar. In fact the “open”
method first call the “new” method, which constructs an appropriate GUI,
and then an existing file is loaded in that GUI. The scheme is shown here:

8

3 An example of real GUI application: PWgui

PWgui is a GUI for PWscf set of numerical programs for electronic structure
calculations. It is a real GUI application that uses the GUIB engine. It is
only a slightly more complicated than above GUI example. Here is a diagram
showing the structure of the PWgui application:

4 File and directory structure of GUIB

Directory structure:
• lib/ auxiliary Tcl/Tk routines, i.e., tclUtils.tcl, tkUtils.tcl
• doc/ programming documentation generated from source-code
• examples/ a few examples (definition files: *.tcl; input files: *.inp)
• external/ external cmdline library
• images/
• src/ GUIB source code directory

9

Description of some src/ files:
• moduleObj.itcl implementation of moduleObj class
• keywordObj.itcl implementation of keywordObj class
• guibKeywords.itcl implementation of all GUIB keywords
• build.itcl build Tk-based GUI defined by module definition file.
• open.itcl open an input file
• save.itcl save edited input file

• guib-keywords-def.tcl definition of options of GUIB-keywords

• gui.itcl application GUI: procs for ”simple-GUI” and
implementation of more elaborate GUI class

10

